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ABSTRACT 
Analytical solutions are presented for laminar fully-developed 
flow in micro/minichannels of hyperelliptical and regular 
polygonal cross-sections. The considered geometries cover a 
wide range of common simply connected shapes including 
circle, ellipse, rectangle, rhomboid, star-shape, equilateral 
triangle, square, pentagon, and hexagon. Therefore, the present 
approach can be considered as a general solution. Predicted 
results for the velocity distribution and pressure drop are 
successfully compared with existing analytical solutions and 
experimental data collected from various sources for a variety 
of geometries, including: polygonal, rectangular, circular, 
elliptical, and rhombic cross-sections. 

NOMENCLATURE 
ܽ = Hyperellipse major axis,  ݉ 
 Cross-sectional area, ݉ଶ = ܣ
ܾ = Hyperellipse minor axis,  ݉ 

 ݉ ,௖߁/ܣ௛ = Hydraulic diameter, 4ܦ
݂ = Fanning friction factor 

݂ܴ݁ = Poiseuille number 
 ௣ = Polar moment of inertia about the centroid, ݉ସܫ
݉  = Number of sides in regular polygonal ducts 
݊ = Exponent in hyperellipse formula 
ܲ = Pressure, ܰ/݉ଶ  
ܳ = Volumetric flow rate, ݉ଷ/ݏ 

ܴ݁ = Reynolds number 
 ݏ = Half the length of the sides in polygonal ducts, ݉ 
 ݏ/݉ ,Axial velocity = ݑ
 Non-dimensional velocity, Eq. (7) = כݑ

Greek symbols 

.ሺ߁ ሻ = Gama function 
 ݉ ,௖ = Perimeter߁
ߝ ,Cross-sectional aspect ratio = ߝ ൌ ܾ/ܽ 
ߟ ,Non-dimensional coordinate = ߟ ൌ  ܽ/ݎ
.ܰ ,Viscosity = ߤ  ଶ݉/ݏ

Subscript 
 ݉ ,Square root of cross-sectional area = ܣ√

1 INTRODUCTION 
The fast growth of microfluidic systems and their applications 
in microelectronic cooling [1], MEMS [2], fuel cell 
technology [3], micro-reactors [4], medical and biomedical 
devices [5] has motivated many researchers to investigate 
microscale transport phenomena. Microchannels have specific 
characteristics such as high surface area per unit volume and 
high heat transfer coefficient [2]. Moreover, microchannels are 
essential components of many microfluidic devices and new 
compact thermal solutions [1]. In addition, porous materials 
can be modeled as networks of microscale conduits; thus, 
transport properties of porous structures are closely related to 
the geometry of the considered microchannels [6,7]. Recently, 
microchannels with different cross-sectional geometries were 
fabricated for both commercial and scientific purposes. 
Therefore, investigation of fluid flow in channels with 
different cross-sections is important. Experimental studies 
conducted by Pfahler et al. [8,9], Harley et al. [10], Choi et al. 
[11], Stanley [12], and Gao et al. [13,14] confirmed that the 
continuum theory holds in micron size channels. 
Comprehensive reviews presented by Steinke and Kandlikar 
[15] and Papautsky et al. [16] discussed this subject; thus, 
existing solutions for large scale ducts are also applicable to 
microchannels.  
Several analytical solutions for flow in non-circular channels 
are available in literature. Dryden et al. [17] based on the 
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analogy between fully-developed velocity profile and stress 
function in elasticity, reported velocity distribution in 
rectangular channels. Purday’s model [18] presented a simple 
approximation for velocity distribution and Truskey et al. [19] 
employed separation of variable technique and developed 
exact velocity distribution in rectangular ducts. Solutions of 
flow in equilateral and isosceles triangular conduits are 
presented by Dryden et al. [17] and Sparrow [20], 
respectively. An isosceles trapezoid is an important shape 
since this cross-section is formed as a result of etching process 
in silicon wafers [21]. Shah [22] employing a discrete least 
method, obtained solutions for fully-developed flow in a 
variety of geometries including: trapezoidal, triangular with 
and without round corners, and rhombic cross-sections. 
Leveque solution for flow in an elliptical duct is reported by 
Richardson [23]. Cheng [24] employed 9 point matching 
method to determine the velocity profile and Poiseuille 
number for m-sided regular polygonal ducts. Fully developed 
flow in ducts with several irregular cross-sections are also 
solved, see for example [25-28]. A comprehensive review of 
the pertinent literature is available in Shah and London [29]. 
The major drawback in using microsystems is their high 
pressure drop, resulted from their small cross-sectional length 
scale [30]. Bahrami et al. [31,32] developed a general model 
for predicting pressure drop in microchannels of arbitrary 
cross-section. Using the analytical solution for elliptical duct 
and the concept of Saint-Venant principal in torsion, they 
showed that the Poiseuille number, f Re, where f is the 
Fanning friction factor and Re is the Reynolds number, is a 
function of the polar moment of inertia, area and perimeter of 
the cross-section of the channel. Their model showed good 
agreement with experimental and numerical data for a wide 
variety of cross-sections such as: rectangular, trapezoidal, 
triangular, circular, and moon-shaped. However, they did not 
provide the velocity distribution in the abovementioned 
microchannels.  
An in-depth knowledge of velocity distribution plays a key 
role in determining other transport properties of microchannels 
such as heat and mass transfer coefficients. However, the 
authors were not able to find any general solutions for fully-
developed flow in ducts. As such, having a generalized 
solution for the velocity distribution in microchannels is a 
great value; this is the subject of the present work.  
Regular polygon and hyperellipse are flexible geometries that 
can cover a wide range of simply connected shapes, such as 
square, triangle, hexagon, rectangle, ellipse, rhomboid, and 
star-shaped. Therefore, the solution of flow through polygonal 
and hyperelliptical channels will be valid for a wide range of 
common geometries; thus, can be considered as a general 
solution.  

In this study, an analytical solution is developed to predict the 
velocity distribution and the pressure drop of fully-developed 
laminar flow in both hyperelliptical and polygonal 
mini/microchannels. The proposed solution is validated 
through comparison with existing theoretical models and 
experimental data collected from different sources for a 
variety of geometries, including: circular, rectangular, 
elliptical, triangular and rhombic cross-sections.  

2 CONSIDERED GEOMETRIES 

2.1 HYPERELLIPSE 
In the first quadrant, a hyperellipse is described by: 

଴ݎ ൌ
ܽ

ሺሺcos ሻ௡ߠ ൅ ሺsin ߠ ሻ௡ሻଵ/௡ߝ/  ,   0 ൏ ߝ ൌ
ܾ
ܽ ൑ 1 (1) 

where ߝ is the aspect ratio, ܽ and ܾ are the major and minor 
axes of the cross-section, respectively. As shown in Figs. 1 and 
2, by varying parameter ݊, one can create several geometries. 
For ݊ < 1 the resulting geometry is a cross-section with 
convex sides, i.e., star-shaped geometry. Equation (1) with 
݊ ൌ 1 results in a rhomboid and when ݊ ൌ 2 yields an ellipse; 
for ܽ ൌ ܾ, the consequent geometry is a circle. For ݊ ൐ 2, a 
rectangle with round corners is created and when ݊ ՜ ∞ the 
resulting geometry becomes a rectangle; in the special case of 
ܽ ൌ ܾ it represents a square and for ܽ ا ܾ it yields parallel 
plates. Due to manufacturing processes, some of the flow 
passages have round corners. The hyperellipse geometry also 
covers these cross-sections. The cross-sectional area of a 
hyperellipse can be calculated from [33]: 

ܣ ൌ 4ܽଶߝ
߁ ߨ√ ቀ݊ ൅ 1

݊ ቁ

4ଵ/௡ ߁ ቀ݊ ൅ 2
2݊ ቁ

  (2) 

where ߁ሺ. ሻ is the gamma function. The perimeter of the 
hyperellipse does not have a closed form solution and must be 
calculated from the following integral: 

௖߁ ൌ 4 න ඨ൬
଴ݎ݀

ߠ݀ ൰
ଶ

൅ ଴ݎ
ଶ

గ/ଶ

଴
ߠ݀  (3) 

 
Figure 1: Effect of n on the shape of the hyperellipse equation 

in the first quadrant, 0.5 = ߝ. 
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Figure 2: Different geometries covered by hyperellipse geometry. 
 

2.1 REGULAR POLYGON 
As shown in Fig. 3, the ݉-sided regular polygon ducts covers 
a wide range of geometries. For ݉ = 3, the consequent 
geometry is an equilateral triangle; when ݉ = 4 and 6 the 
shapes become a square and a hexagon, respectively. A circle 
is a polygon with infinite number of sides, i.e., ݉ ՜ ∞. The 
cross-sectional area of the polygonal channels is: 

ܣ ൌ
ଶݏ ݉ 

tan ߨ
݉

 (4) 

and its perimeter is calculated as: 

௖߁ ൌ  (5)  ݏ ݉ 2

As shown in Fig. (3), all of the hatched regions surrounded by 
symmetry lines are triangles with different vertex angles. 

3 PROBLEM FORMULATION 
Fully-developed, laminar, constant properties, and 
incompressible flow in microchannels with constant 
hyperelliptical and polygonal cross-sections is considered. The 
compressibility effects can be neglected for the Mach numbers 
lower than 0.3 [34]; thus, the present analysis is acceptable for 
all Newtonian liquids and gas flows with 0.3 > ܽܯ. Using the 

abovementioned assumptions, the momentum equation 
reduces to Poisson’s equation [34]: 

݀ܲ
ݖ݀ ൌ ߤ ቆ

߲ଶݑ
ଶݎ߲ ൅

1
ݎ

ݑ߲
ݎ߲ ൅

1
ଶݎ

߲ଶu
 ଶቇ (6)ߠ߲

where ߤ is the fluid viscosity. Using the geometrical 
symmetry, only a portion of the cross-section is considered in 
the analysis, as shown in Figs. 4 and 5. Applicable boundary 
conditions for hyperelliptical channels are: 

ݑ߲
ฬߠ߲

ఏୀగ
ଶ

ൌ 0 ,
ݑ߲
ฬߠ߲

ఏୀ଴
ൌ 0 , ଴ሻݎሺݑ ൌ 0 (7) 

The first two equations are obtained from the existing 
symmetry in the hyperellipse geometry. Moreover, the velocity 
should be bounded. The general solution of the Poisson’s 
equation, Eq. (3), in the cylindrical coordinate is [35]: 

ݑ ൌ ଵܣ ൅ ܤ ln ݎ ൅
ଶݎ

ߤ4 ൬
݀ܲ
 ൰ݖ݀

൅ ෍ሺܥ௞ݎ௞ ൅ ௞ܧ௞ሻሺିݎ௞ܦ cos ߠ݇ ൅ ௞ܨ sin ሻߠ݇
ஶ

௞ୀଵ

 
(8) 
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Figure 3: Polygons with different number of sides, ݉. 
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Figure 4: Hyperelliptical cross-section and applicable 

boundary conditions. 
 
The unknown coefficients ܣଵ, ܥ ,ܤ௞, ܦ௞, ܧ௞, and ܨ௞ should be 
calculated through applying the boundary conditions, Eq. (4). 
At ݎ ൌ 0, the velocity must have a finite value; thus, ܤ ൌ
௞ܦ ൌ 0. Since ሺ݀ܲ/݀ݖሻ remains constant for fully-developed 
flows, Eq. (5) can be simplified as:  

ݑ ൌ
1
ߤ ൬

݀ܲ
൰ݖ݀ ൥ܣଵ ൅

ଶݎ

4

൅ ෍ሺݎ௞ሻሺܧ௞ cos ߠ݇ ൅ ௞ܨ sin ሻߠ݇
ஶ

௞ୀଵ

൩  

(9) 

where ܣଵ, ܧ௞, and ܨ௞ are still unknown constants. The 
symmetry conditions at ߠ ൌ 0 and ߠ ൌ ௞ܨ result in 2/ߨ ൌ 0 
and ݇ = 2, 4, 6, ..., respectively. After non-dimensionalizing, 
Eq. (9) reduces to: 

כݑ ൌ ൥1 െ
1

ଵܣ4
ଶߟ ൅ ෍

௜ܥ

ଵܣ
ଶ௜ߟ cos ߠ2݅

ஶ

௜ୀଵ

൩  , 

כݑ ൌ
ݑ

ܷ௠௔௫
ൌ

ݑ
1
ߤ ቀ݀ܲ

ቁݖ݀ ଵ ܽଶܣ
 , ߟ ൌ

ݎ
ܽ  

(10) 

The last boundary condition, i.e., the no-slip condition, 
଴ሻߟሺכݑ ൌ 0, on the channel wall should be used to calculate 
the rest of unknown coefficients in Eq. (10). Substituting for 
 :଴ from Eq. (1), one can writeߟ

൥ܣଵ െ
1
4

1
ሺሺcos ሻ௡ߠ ൅ ሺsin ߠ ሻ௡ሻଶ/௡ߝ/

൅ ෍ ௜ܥ
cos ߠ2݅

ሺሺcos ሻ௡ߠ ൅ ሺsin ߠ ሻ௡ሻଶ௜/௡ߝ/

ஶ

௜ୀଵ

൩ ൌ 0 

(11) 

This equation is a function of ߠ. To evaluate the coefficients, 
following [36], we truncate the series from the mth term and 
apply Eq. (11) over m+1 different ߠs and solve the resulting 
set of linear equations.  
The same approach can be followed for polygonal ducts, 
shown in Fig. 5. The difference between the two geometries is 
the location of the symmetry lines. Applicable symmetry 
boundary conditions for polygonal cross-section are: 

ݑ߲
ฬߠ߲

ఏୀ గ
௠

ൌ 0 ,   
ݑ߲
ฬߠ߲

ఏୀ଴
ൌ 0  (12) 

 
Figure 4: Considered geometry for modeling polygonal cross-

section. 
 

where ݉ is the number of sides. Using Eq. (12), the 
dimensionless velocity distribution becomes: 

כݑ ൌ ൥1 െ
1

ଵܣ4
ଶߟ ൅ ෍

௜ܥ

ଵܣ
ଶ௠௜ߟ cos ߠ2݉݅

ஶ

௜ୀଵ

൩ ,  

כݑ ൌ
ݑ

ܷ௠௔௫
ൌ

ݑ ቀtan ߨ
݉ቁ

ଶ

1
ߤ ቀ݀ܲ

ቁݖ݀ ଶݏ ଵܣ
ߟ   , ൌ

ݎ tan ߨ
݉

ݏ  

(13) 

Applying no-slip boundary condition, the unknown 
coefficients can be determined. The calculated coefficients for 
several hyperelliptical and polygonal ducts are listed in Tables 
1 and 2, respectively. 
Note that we apply the no-slip boundary condition on a few 
points over the wall to find the same number of coefficients; 
this approach is an approximation. Therefore, one should be 
aware that Eq. (11) may not hold over the whole boundary. 
Thus, the minimum number of terms that should be included 
in the analysis without loss of accuracy is important. In 
addition, it is noteworthy that Eq. (11) is in cylindrical 
coordinate system. As such, for cross-sections that 
significantly deviate from elliptical shape, more terms of the 
series solution should be included in the analysis. 
To verify the present approach, in Figs. 6-8 the predicted non-
dimensional velocity distributions for elliptical and 
rectangular cross-sections are compared with the analytical 
solutions of Richarson [23] and Truskey et al. [19], 
respectively. The hyperellipse equation, Eq. (1), for ݊ ՜ ∞ 
yields a rectangle; however, ݊ = 20 is large enough to produce 
comparable results, see Fig. 1. Figures 6-8 show that the 
predicted contours of constant non-dimensional velocities are 
in full agreement with the analytical results for both elliptical 
and rectangular cross-sections. The solution for a polygonal 
duct with 3 sides, i.e., equilateral triangular, is successfully 
compared with the solution of Dryden et al. [17] in Fig. 9.  
The maximum velocities in the channel are also compared 
with analytical results for the considered geometries in Table 
3. Tabulated results justify the accuracy of the developed 
solution. 
 
 

Symmetry

r
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Table 1: Coefficients in Eq. (10) for hyperelliptical ducts. 

 ݊ = 20, rectangle 
 1 = ߝ 0.8 = ߝ 0.6 = ߝ 0.5 = ߝ 0.4 = ߝ 0.25 = ߝ 0.2 = ߝ 

 ଵ 0.020 0.031 0.077 0.114 0.153 0.229 0.296ܣ
 ଵ 0.249 0.248 0.225 0.195 0.158 0.076 0.000ܥ
 ଶ -0.002 -0.011 -0.032 -0.045 -0.051 -0.052 -0.046ܥ
 ଷ -0.009 -0.003 -0.018 -0.013 -0.014 -0.004 0.000ܥ
 ସ 0.001 -0.014 -0.002 0.000 0.004 0.000 0.000ܥ
 ହ -0.009 0.000 0.000 0.000 0.000 0.000 0.000ܥ
 ݊ = 4, rectangle with round corner 
 1 = ߝ 0.8 = ߝ 0.6 = ߝ 0.5 = ߝ 0.4 = ߝ 0.25 = ߝ 0.2 = ߝ 

 ଵ 0.020 0.031 0.075 0.111 0.149 0.223 0.285ܣ
 ଵ 0.248 0.244 0.216 0.184 0.149 0.071 0.000ܥ
 ଶ -0.011 -0.017 -0.036 -0.044 -0.045 -0.042 -0.035ܥ
 ଷ 0.000 -0.007 -0.002 -0.002 0.000 0.000 0.000ܥ
 ସ -0.007 0.000 -0.004 0.000 -0.003 -0.002 0.000ܥ

 ݊ = 2, ellipse 
 1 = ߝ 0.8 = ߝ 0.6 = ߝ 0.5 = ߝ 0.4 = ߝ 0.25 = ߝ 0.2 = ߝ 

 ଵ 0.019 0.029 0.069 0.100 0.132 0.195 0.250ܣ
 ଵ 0.231 0.221 0.181 0.150 0.118 0.055 0.000ܥ

 ݊ = 1, rhomboid 
 1 = ߝ 0.8 = ߝ 0.6 = ߝ 0.5 = ߝ 0.4 = ߝ 0.25 = ߝ 0.2 = ߝ 

 ଵ 0.016 0.023 0.048 0.065 0.084 0.117 0.149ܣ
 ଵ 0.164 0.143 0.096 0.075 0.054 0.027 0.000ܥ
 ଶ 0.310 0.312 0.237 0.202 0.175 0.131 0.101ܥ
 ଷ -0.820 -0.715 -0.251 -0.186 -0.063 -0.025 0.000ܥ
 ସ 1.377 1.106 0.119 0.094 0.000 0.000 0.000ܥ
 ହ -1.253 -0.961 0.000 0.000 0.000 0.000 0.000ܥ
 ଺ 0.457 0.341 0.000 0.000 0.000 0.000 0.000ܥ

    star-shape ,1 = ߝ 
 ݊ = 0.9 ݊ = 0.8 ݊ = 0.7 ݊ = 0.6    

    ଵ 0.129 0.107 0.085 0.062ܣ
    ଵ 0.000 0.000 0.000 0.000ܥ
    ଶ 0.121 0.149 0.205 0.304ܥ
    ଷ 0.000 0.000 0.000 0.001ܥ
    ସ 0.000 -0.006 -0.039 -0.176ܥ
    ହ 0.000 0.000 0.000 -0.001ܥ
    ଺ 0.000 0.000 0.000 0.060ܥ

כݑ ൌ ൥1 െ
1

ଵܣ4
ଶߟ ൅ ෍

௜ܥ

ଵܣ
ଶ௜ߟ cos ߠ2݅

ஶ

௜ୀଵ

൩ 
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Table 2: Coefficients in Eq. (13) for polygonal ducts. 

 ݉ = 3 ݉ = 4 ݉ = 5 ݉ = 6 ݉ = 7 ݉ = 8 ݉ = 12 ݉ ՜ ∞

 ଵ 0.333 0.296 0.278 0.270 0.265 0.261 0.255 0.250ܣ

 ଵ -0.083 -0.046 -0.021 -0.021 -0.015 -0.012 -0.006 0.000ܥ

כݑ ൌ ൤1 െ
1

4 ଵܣ
ଶߟ ൅

ଵܥ

ଵܣ
ଶ௠ߟ cosሺ2݉ߠሻ൨ 

ଵܣ ൌ 0.247 ൅
0.767

݉ଶ , ଵܥ ൌ
1

6.01 െ 3.12 ݉ െ 0.965 ݉ଶ 

 
(a) 

(b) 

Figure 6: Contours of constant velocity for elliptical channel 
with 0.5 = ߝ, a) present model, b) Richardson et al. [23].  

 

4 PRESSURE DROP AND POISEUILLE 
NUMBER 
Pressure drop is an important characteristic of any system that 
should be considered in the design procedure. Once the 
coefficients are known, one can integrate Eqs. (7) and (13) to 
find the pressure drop for a specific volumetric flow rate, ܳ, 
for hyperelliptical and polygonal ducts, respectively: 

൬
݀ܲ
൰ݖ݀

ு௬௣௘௥௘௟௟௜௣௦௘
ൌ

ܳߤ
ܽଶ ൝ඵ ൥ܣଵ െ

1
4 ଶߟ

൅ ෍ ଶ௜ߞ௜ܥ cos ߠ2݅
ஶ

௜ୀଵ

൩ ൡܣ݀
ିଵ

 

(14) 

൬
݀ܲ
൰ݖ݀

௉௢௟௬௚௢௡
ൌ

ܳߤ ቀtan ߨ
݉ቁ

ଶ

ଶݏ ൝ඵ ൥ܣଵ െ
1
4 ଶߟ

൅ ෍ ଶ௠௜ߟ௜ܥ cos ߠ2݉݅
ஶ

௜ୀଵ

൩ ൡܣ݀
ିଵ

 

(15) 

 
 
(a) 

(b) 

Figure 7: Contours of constant velocity for squared channel, a) 
present model, b) Truskey et al. [19]. 
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(a) 

(b) 

Figure 8: Contours of constant velocity for rectangular 
channel with 0.25 = ߝ, a) present model, b) Truskey et al. [19]. 
 
It can be seen that the pressure drop is a function of the 
volumetric flow rate and dimensions of the cross-section. 
Poiseuille number, f Re, is the common dimensionless number 
used for analysing pressure drop in channels. The value of f Re 
depends on the characteristic length scale used for defining the 
Reynolds number. Selection of the characteristic length is an 
arbitrary choice and should not affect the final solution, i.e., 
the pressure drop. However, a more appropriate length scale 
leads to more consistent results, especially when various 
cross-sections are considered. A circular duct is fully described 
with its diameter, thus the obvious length scale is the diameter 
(or radius). For non-circular cross-sections, the selection is not 
as clear; many textbooks and researchers have conventionally 
chosen the hydraulic diameter [34]. Figure 10a and b shows 
the comparison of the analytical solutions of f Re, for 
elliptical, rectangular, and rhomboid cross-sections based on 
the hydraulic diameter and the square root of area, 
respectively. It can be observed that using the square root of 
area as the characteristic length leads to similar trends in 
analytical solutions of f Re for the considered geometries. The 
values of f Re√஺ can be determined from the following 
equation: 

݂Re√஺ ൌ
ହ/ଶܣ 2

௖߁ܳߤ

݀ܲ
ݖ݀  (11) 

 
(a) 

(b) 

Figure 9: Contours of constant velocity for a sector of 
triangular channel, a) present model, b) Dryden et al. [17]. 

 
Table 3: Comparison of the maximum velocities for elliptical and rectangular channels with other analytical solutions. 
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where ߁௖ is the cross-section perimeter and ݀ܲ/݀ݖ is 
calculated from Eqn. (14) and (15). Values of f Re√஺ obtained 
from the present model and the correlations proposed by Shah 
and London [29] are plotted versus the cross-sectional aspect 
ratio for rectangular, elliptical and rhombic ducts in Fig. 11. 
The results have an excellent agreement. The rectangular 
microchannels have the highest f Re√஺ in comparison to other 
considered geometries with the same cross-sectional area. In 
addition, it can be seen that the Poiseuille number has a 
reverse relationship with aspect ratio. 
In Fig. 12, f Re√஺ values for polygonal channels calculated 
using the present solution are compared with the results of 
Shah and London [29] and the results are in complete 
agreement. More importantly, the minimum value of f Re√஺ 
occurs for ݉ = 6; this means that hexagonal ducts have the 
minimum pressure drop in comparison with other polygonal 
shapes. 
 
(a) 

(b) 

Figure 10: f Re for different geometries using (a) hydraulic 
diameter and (b) square root of area as characteristic length. 

 
 

 
Figure 11: Values of f Re√஺ obtained from present model and 

existing correlations [29] for different values of ݊, 
hyperelliptical ducts. 

 
Figure 12: Values of f Re√஺ obtained from present model and 
existing correlations [29] for different values of ݉, polygonal 

ducts. 
 
To determine the Poiseuille number, f Re, Bahrami et al. [30, 
31] started from the analytical solution of elliptical channel. 
They also selected √ܣ  as the length scale in their study. The 
final result was presented in an easy-to-use form, as a function 
of cross-sectional area and polar moment of inertia. In Table 4 
the non-dimensional values of the pressure drop for elliptical 
ducts are compared with the analytical model of Richardson 
[23] and the model of Bahrami et al. [31]. All solutions 
capture the same results for elliptical channels. The values of 
the pressure drop obtained from the present solution for 
rectangular cross-section and the approximate model of 
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Bahrami et al. [31] are listed in Table 5. It can be seen that the 
difference between the proposed model and Bahrami et al.’s 
model [31] is less than 8%. Therefore, it is an accurate 
alternative approach for prediction of approximate values of 
pressure drop. 

 
Table 4: f Re√஺ for elliptical ducts obtained from different 

models. 

 ߝ
f Re√஺ 

Richardson 
[23] 

f Re√஺ 
Present 
solution 

f Re√஺ 
Bahrami et 

al. [31] 

1 14.18 14.18 14.18 
0.5 16.26 16.26 16.26 

0.33 19.20 19.20 19.20 
0.25 22.07 22.07 22.07 
0.2 24.65 24.65 24.65 

 
Table 5: f Re√஺for rectangular ducts obtained from different 

models. 

 ߝ
f Re√஺ 

Present solution 
f Re√஺ 

Bahrami et al. [31] 

1 14.17 13.16 
0.5 16.50 15.51 

0.33 19.74 18.99 

0.25 22.79 22.37 

0.2 25.60 25.50 

 

4.1 COMPARISON WITH EXPERIMENTAL DATA 
Several researchers have reported experimental data for 
pressure drop in rectangular microchannels. Stanly [12] 
studied flow of water, nitrogen, and helium in arrays of 
rectangular microchannels. The channels were fabricated by 
machining aluminum substrates and then covering them with 
glass plates. Papautsky et al. [37] fabricated arrays of pipettes 
with width varying from 150 ݉ߤ to 600 ݉ߤ. Their data for 
low aspect ratios consistently were 20% larger than theoretical 
values. Therefore, only their results for aspect ratios larger 
than 0.05 are included here. 
Liu and Garimella [38] carried out experiments and measured 
the friction factor in rectangular microchannels. They did not 
observe any scale-related phenomena in their experiments and 
concluded that the conventional theory can be used to predict 
the flow behaviour in microchannels in the range of 
dimensions considered.  

Wu and Cheng [39] conducted experiments and measured the 
friction factor of laminar flow of deionized water in smooth 
silicon microchannels of trapezoidal, rectangular, and 
triangular cross-sections.  
Jung and Kwak [40] experimentally measured fluid flow and 
heat transfer in rectangular silicon microchannels with 
different aspect ratios. But, they only reported the friction 
factor for two geometries, 0.5 = ߝ and 1. 
Recently, Akbari et al. [41] performed experiments to measure 
pressure drop in rectangular microchannels, fabricated in 
Polydimethylsiloxane (PDMS). The fabricated channels were 
cut in different locations to make sure that they have a 
rectangular cross-section. They tested several samples with a 
wide range of cross-sectional aspect ratios.  
In Fig. 9 the values of Poiseuille number are plotted against 
experimental data collected from the abovementioned sources. 
It can be seen that the present solution captures the trends of 
experimental data of liquid flow in rectangular ducts 
fabricated using different materials over a wide range of 
aspect ratios. Moreover, it can be seen that the model of 
Bahrami et al. [31] provides good approximations for 
Poiseuille number. 

 
Figure 9: Comparison of f Re√஺ values for rectangular 

channels with experimental data. 

5 CONCLUSIONS 
Analytical solutions are proposed for the laminar, fully-
developed flow through hyperelliptical and polygonal 
mini/macrochannels. The present method enables one to 
predict velocity distribution and pressure drop for several 
common fabricated geometries for industrial applications 
including: circular, elliptical, rectangular, rhomboid, 
triangular, and hexagonal ducts. The approach is based on 
using the general solution Poisson’s equation in the form of 
trigonometric series expansion. Therefore, the required 

+
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coefficients are reported for a wide range of geometries. Using 
the developed solution for velocity distribution, pressure drops 
and Poiseuille numbers are determined for a variety of cross-
sections. The predicted values are verified through comparison 
with analytical solutions for elliptical, circular, rectangular, 
rhombic, and polygonal ducts. Predicted results are also 
successfully compared with experimental data collected by 
others for rectangular channels.  
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